Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479809

RESUMO

First-order thalamic nuclei receive feedforward signals from peripheral receptors and relay these signals to primary sensory cortex. Primary sensory cortex, in turn, provides reciprocal feedback to first-order thalamus. Because the vast majority of sensory thalamocortical inputs target primary sensory cortex, their complementary corticothalamic neurons are assumed to be similarly restricted to primary sensory cortex. We upend this assumption by characterizing morphologically diverse neurons in multiple mid-level visual cortical areas of the primate (Macaca mulatta) brain that provide direct feedback to the primary visual thalamus, the dorsal lateral geniculate nucleus (LGN). Although the majority of geniculocortical neurons project to primary visual cortex (V1), a minority, located mainly in the koniocellular LGN layers, provide direct input to extrastriate visual cortex. These "V1-bypassing" projections may be implicated in blindsight. We hypothesized that geniculocortical inputs directly targeting extrastriate cortex should be complemented by reciprocal corticogeniculate circuits. Using virus-mediated circuit tracing, we discovered corticogeniculate neurons throughout three mid-level extrastriate areas: MT, MST, and V4. Quantitative morphological analyses revealed nonuniform distributions of unique cell types across areas. Many extrastriate corticogeniculate neurons had spiny stellate morphology, suggesting possible targeting of koniocellular LGN layers. Importantly though, multiple morphological types were observed across areas. Such morphological diversity could suggest parallel streams of V1-bypassing corticogeniculate feedback at multiple stages of the visual processing hierarchy. Furthermore, the presence of corticogeniculate neurons across visual cortex necessitates a reevaluation of the LGN as a hub for visual information rather than a simple relay.


Assuntos
Córtex Visual , Vias Visuais , Animais , Retroalimentação , Vias Visuais/fisiologia , Tálamo/fisiologia , Macaca mulatta , Córtex Visual/fisiologia
2.
eNeuro ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395611

RESUMO

Stroke damage to the primary visual cortex (V1) causes severe visual deficits, which benefit from perceptual retraining. However, whereas training with high-contrast stimuli can locally restore orientation and motion direction discrimination abilities at trained locations, it only partially restores luminance contrast sensitivity (CS). Recent work revealed that high-contrast discrimination abilities may be preserved in the blind field of some patients early after stroke. Here, we asked if CS for orientation and direction discrimination is similarly preserved inside the blind field, to what extent, and whether it could benefit from a visual training intervention. Thirteen subacute patients (<3 months post-V1-stroke) and 12 chronic patients (>6 months post-V1-stroke) were pre-tested, then trained to discriminate either orientation or motion direction of Gabor patches of progressively lower contrasts as their performance improved. At baseline, more subacute than chronic participants could correctly discriminate the orientation of high-contrast Gabors in their blind field, but all failed to perform this task at lower contrasts, even when 10Hz flicker or motion direction were added. Training improved CS in a greater portion of subacute than chronic participants, but no-one attained normal CS, even when stimuli contained flicker or motion. We conclude that, unlike the near-complete training-induced restoration of high-contrast orientation and motion direction discrimination abilities, V1 damage in adulthood may severely limit the residual visual system's ability to regain normal CS. Our results support the notion that CS involves different neural substrates and computations than those required for orientation and direction discrimination in V1-damaged visual systems.Significance statement Stroke-induced V1 damage in adult humans induces a rapid and severe impairment of contrast sensitivity for orientation and motion direction discrimination in the affected hemifield, although discrimination of high-contrast stimuli can persist for several months. Adaptive training with Gabor patches of progressively lower contrasts improves contrast sensitivity for both orientation and motion discriminations in the blind-field of subacute (<3 months post-stroke) and chronic (>6 months post-stroke) participants; however, it fails to restore normal contrast sensitivity. Nonetheless, more subacute than chronic stroke participants benefit from such training, particularly when discriminating the orientation of static, non-flickering targets. Thus, contrast sensitivity appears critically dependent on processing within V1, with perceptual training displaying limited potential to fully restore it after V1 damage.

3.
J Vis ; 23(11): 79, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733499

RESUMO

Attesting to the relative strength of retinal inputs to the dorsal lateral geniculate nucleus (LGN) of the thalamus, in cats, acute retinal lesions erase responses of LGN neurons whose receptive fields fall within the retinal lesion projection zone (LPZ). Yet, thirty days later, these receptive fields appear to shift their representation to the immediate surround of the LPZ. However, little is known about whether LGN neurons in parallel streams are equally affected following retinal damage. Here, we asked whether changes in response properties of surviving LGN neurons depend on (1) their identity as either X/Y or ON/OFF cells, or (2) their receptive fields' positions relative to the LPZ. To test these hypotheses, we made retinal lesions by injecting kainic acid (KA) into one eye of ferrets and recorded from LGN neurons bilaterally in response to visual stimuli 7 days post-lesion. Area and eccentricities of retinal ganglion cell (RGC) loss in the retina were measured by RBPMS immunostaining. Relative eccentricities of recorded LGN neurons were based on electrode tracts. Our preliminary data suggest that RGC with large cell bodies are preserved in the lesioned eye. Additionally, we observed normal transient responses but altered sustained responses to flashing stimuli among contralateral responsive OFF LGN neurons. Together, these findings support the notion that acute KA lesions may differentially impact visual parallel processing streams at the surround of the LPZ in the LGN.


Assuntos
Furões , Corpos Geniculados , Animais , Gatos , Retina , Células Ganglionares da Retina , Eletrodos
4.
medRxiv ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37693553

RESUMO

Stroke damage to the primary visual cortex (V1) causes severe visual deficits, which benefit from perceptual retraining. However, whereas training with high-contrast stimuli can locally restore orientation and direction discrimination abilities at trained locations, it only partially restores luminance contrast sensitivity (CS). Recent work revealed that high-contrast discrimination abilities may be preserved in the blind field of some patients early after stroke. Here, we asked if CS for orientation and direction discrimination is similarly preserved inside the blind field, to what extent, and whether it could benefit from a visual training intervention. Thirteen subacute (<3 months post-V1-stroke) and 12 chronic (>6 months post-V1-stroke) participants were pre-tested, then trained to discriminate either orientation or motion direction of Gabor patches of progressively lower contrasts. At baseline, more subacute than chronic participants could correctly discriminate the orientation of high-contrast Gabors in their blind field, but all failed to perform this task at lower contrasts, even when 10Hz flicker or motion direction were added. Training improved CS in a greater portion of subacute than chronic participants, but no-one attained normal CS, even when stimuli contained flicker or motion. We conclude that, unlike the near-complete training-induced restoration of high-contrast orientation and direction discrimination, there is limited capacity for restoring CS after V1 damage in adulthood. Our results suggest that CS involves different neural substrates and computations than those required for orientation and direction discrimination in V1-damaged visual systems.

5.
Neuroimage ; 268: 119889, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36681137

RESUMO

BACKGROUND AND PURPOSE: The sensory cortex is organized into "maps" that represent sensory space across cortical space. In primary visual cortex (V1) of highly visual mammals, multiple visual feature maps are organized into a functional architecture anchored by orientation domains: regions containing neurons preferring the same stimulus orientation. Although the pinwheel-like structure of orientation domains is well-characterized in the superficial cortical layers in dorsal regions of V1, the 3D shape of orientation domains spanning all 6 cortical layers and across dorsal and ventral regions of V1 has never been revealed. METHODS: We utilized an emerging research method in neuroscience, functional ultrasound imaging (fUS), to resolve the 3D structure of orientation domains throughout V1 in anesthetized female ferrets. fUS measures blood flow from which neuronal population activity is inferred with improved spatial resolution over fMRI. RESULTS: fUS activations in response to drifting gratings placed at multiple locations in visual space generated unique activation patterns in V1 and visual thalamus, confirming prior observations that fUS can resolve retinotopy. Iso-orientation domains, determined from clusters of activations driven by large oriented gratings, were cone-shaped and present in both dorsal and ventral regions of V1. The spacing between iso-orientation domains was consistent with spacing measured previously using optical imaging methods. CONCLUSIONS: Orientation domains are cones rather than columns. Their width and intra-domain distances may vary across dorsal and ventral regions of V1. These findings demonstrate the power of fUS at revealing 3D functional architecture in cortical regions not accessible to traditional surface imaging methods.


Assuntos
Furões , Córtex Visual , Humanos , Animais , Feminino , Furões/fisiologia , Córtex Visual Primário , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Células Fotorreceptoras Retinianas Cones , Ultrassonografia , Mapeamento Encefálico , Estimulação Luminosa
6.
J Comp Neurol ; 530(7): 1064-1080, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33950555

RESUMO

Attention promotes the selection of behaviorally relevant sensory signals from the barrage of sensory information available. Visual attention modulates the gain of neuronal activity in all visual brain areas examined, although magnitudes of gain modulations vary across areas. For example, attention gain magnitudes in the dorsal lateral geniculate nucleus (LGN) and primary visual cortex (V1) vary tremendously across fMRI measurements in humans and electrophysiological recordings in behaving monkeys. We sought to determine whether these discrepancies are due simply to differences in species or measurement, or more nuanced properties unique to each visual brain area. We also explored whether robust and consistent attention effects, comparable to those measured in humans with fMRI, are observable in the LGN or V1 of monkeys. We measured attentional modulation of multiunit activity in the LGN and V1 of macaque monkeys engaged in a contrast change detection task requiring shifts in covert visual spatial attention. Rigorous analyses of LGN and V1 multiunit activity revealed robust and consistent attentional facilitation throughout V1, with magnitudes comparable to those observed with fMRI. Interestingly, attentional modulation in the LGN was consistently negligible. These findings demonstrate that discrepancies in attention effects are not simply due to species or measurement differences. We also examined whether attention effects correlated with the feature selectivity of recorded multiunits. Distinct relationships suggest that attentional modulation of multiunit activity depends upon the unique structure and function of visual brain areas.


Assuntos
Corpos Geniculados , Córtex Visual , Animais , Fenômenos Eletrofisiológicos , Corpos Geniculados/fisiologia , Macaca mulatta , Neurônios/fisiologia , Estimulação Luminosa , Córtex Visual/fisiologia , Vias Visuais/fisiologia
7.
Brain Struct Funct ; 226(9): 2777-2791, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34636984

RESUMO

Complementary reciprocal feedforward and feedback circuits connecting the visual thalamus with the visual cortex are essential for visual perception. These circuits predominantly connect primary and secondary visual cortex with the dorsal lateral geniculate nucleus (LGN). Although there are direct geniculocortical inputs to extrastriate visual cortex, whether reciprocal corticogeniculate neurons exist in extrastriate cortex is not known. Here we utilized virus-mediated retrograde tracing to reveal the presence of corticogeniculate neurons in three mid-level extrastriate visual cortical areas in ferrets: PMLS, PLLS, and 21a. We observed corticogeniculate neurons in all three extrastriate areas, although the density of virus-labeled corticogeniculate neurons in extrastriate cortex was an order of magnitude less than that in areas 17 and 18. A cluster analysis of morphological metrics quantified following reconstructions of the full dendritic arborizations of virus-labeled corticogeniculate neurons revealed six distinct cell types. Similar corticogeniculate cell types to those observed in areas 17 and 18 were also observed in PMLS, PLLS, and 21a. However, these unique cell types were not equally distributed across the three extrastriate areas. The majority of corticogeniculate neurons per cluster originated in a single area, suggesting unique parallel organizations for corticogeniculate feedback from each extrastriate area to the LGN. Together, our findings demonstrate direct feedback connections from mid-level extrastriate visual cortex to the LGN, supporting complementary reciprocal circuits at multiple processing stages along the visual hierarchy. Importantly, direct reciprocal connections between the LGN and extrastriate cortex, that bypass V1, could provide a substrate for residual vision following V1 damage.


Assuntos
Furões , Córtex Visual , Vias Visuais , Animais , Retroalimentação , Corpos Geniculados
8.
J Comput Neurosci ; 49(3): 259-271, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32632511

RESUMO

In spite of their anatomical robustness, it has been difficult to establish the functional role of corticogeniculate circuits connecting primary visual cortex with the lateral geniculate nucleus of the thalamus (LGN) in the feedback direction. Growing evidence suggests that corticogeniculate feedback does not directly shape the spatial receptive field properties of LGN neurons, but rather regulates the timing and precision of LGN responses and the information coding capacity of LGN neurons. We propose that corticogeniculate feedback specifically stabilizes the response gain of LGN neurons, thereby increasing their information coding capacity. Inspired by early work by McClurkin et al. (1994), we manipulated the activity of corticogeniculate neurons to test this hypothesis. We used optogenetic methods to selectively and reversibly enhance the activity of corticogeniculate neurons in anesthetized ferrets while recording responses of LGN neurons to drifting gratings and white noise stimuli. We found that optogenetic activation of corticogeniculate feedback systematically reduced LGN gain variability and increased information coding capacity among LGN neurons. Optogenetic activation of corticogeniculate neurons generated similar increases in information encoded in LGN responses to drifting gratings and white noise stimuli. Together, these findings suggest that the influence of corticogeniculate feedback on LGN response precision and information coding capacity could be mediated through reductions in gain variability.


Assuntos
Optogenética , Vias Visuais , Animais , Retroalimentação , Furões , Corpos Geniculados , Modelos Neurológicos , Neurônios , Estimulação Luminosa
9.
Cereb Cortex Commun ; 1(1): tgaa014, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32864614

RESUMO

The effects of visual spatial attention on neuronal firing rates have been well characterized for neurons throughout the visual processing hierarchy. Interestingly, the mechanisms by which attention generates more or fewer spikes in response to a visual stimulus remain unknown. One possibility is that attention boosts the likelihood that synaptic inputs to a neuron result in spikes. We performed a novel analysis to measure local field potentials (LFPs) just prior to spikes, or reverse spike-triggered LFP "wavelets," for neurons recorded in primary visual cortex (V1) of monkeys performing a contrast change detection task requiring covert shifts in visual spatial attention. We used dimensionality reduction to define LFP wavelet shapes with single numerical values, and we found that LFP wavelet shape changes correlated with changes in neuronal firing rate. We then tested whether a simple classifier could predict monkeys' focus of attention from LFP wavelet shape. LFP wavelet shapes sampled in discrete windows were predictive of the locus of attention for some neuronal types. These findings suggest that LFP wavelets are a useful proxy for local network activity influencing spike generation, and changes in LFP wavelet shape are predictive of the focus of attention.

10.
J Neurophysiol ; 124(2): 432-442, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32667229

RESUMO

Interest in exploring homologies in the early visual pathways of rodents, carnivores, and primates has recently grown. Retinas of these species contain morphologically and physiologically heterogeneous retinal ganglion cells that form the basis for parallel visual information processing streams. Whether rare retinal ganglion cells with unusual visual response properties in carnivores and primates project to the visual thalamus and drive unusual visual responses among thalamic relay neurons is poorly understood. We surveyed neurophysiological responses among hundreds of lateral geniculate nucleus (LGN) neurons in ferrets and observed a novel subpopulation of LGN neurons displaying doublet-spiking waveforms. Some visual response properties of doublet-spiking LGN neurons, like contrast and temporal frequency tuning, were intermediate to those of X and Y LGN neurons. Interestingly, most doublet-spiking LGN neurons were tuned for orientation and displayed direction selectivity for horizontal motion. Spatiotemporal receptive fields of doublet-spiking neurons were diverse and included center/surround organization, On/Off responses, and elongated separate On and Off subregions. Optogenetic activation of corticogeniculate feedback did not alter the tuning or spatiotemporal receptive fields of doublet-spiking neurons, suggesting that their unusual tuning properties were inherited from retinal inputs. The doublet-spiking LGN neurons were found throughout the depth of LGN recording penetrations. Together these findings suggest that while extremely rare (<2% of recorded LGN neurons), unique subpopulations of LGN neurons in carnivores receive retinal inputs that confer them with nonstandard visual response properties like direction selectivity. These results suggest that neuronal circuits for nonstandard visual computations are common across a variety of species, even though their proportions vary.NEW & NOTEWORTHY Interest in visual system homologies across species has recently increased. Across species, retinas contain diverse retinal ganglion cells including cells with unusual visual response properties. It is unclear whether rare retinal ganglion cells in carnivores project to and drive similarly unique visual responses in the visual thalamus. We discovered a rare subpopulation of thalamic neurons defined by unique spike shape and visual response properties, suggesting that nonstandard visual computations are common to many species.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Corpos Geniculados/fisiologia , Neurônios/fisiologia , Células Ganglionares da Retina/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Potenciais de Ação/fisiologia , Animais , Furões , Corpos Geniculados/citologia , Optogenética , Especificidade da Espécie
11.
Annu Rev Vis Sci ; 6: 313-334, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32552571

RESUMO

The physiological response properties of neurons in the visual system are inherited mainly from feedforward inputs. Interestingly, feedback inputs often outnumber feedforward inputs. Although they are numerous, feedback connections are weaker, slower, and considered to be modulatory, in contrast to fast, high-efficacy feedforward connections. Accordingly, the functional role of feedback in visual processing has remained a fundamental mystery in vision science. At the core of this mystery are questions about whether feedback circuits regulate spatial receptive field properties versus temporal responses among target neurons, or whether feedback serves a more global role in arousal or attention. These proposed functions are not mutually exclusive, and there is compelling evidence to support multiple functional roles for feedback. In this review, the role of feedback in vision will be explored mainly from the perspective of corticothalamic feedback. Further generalized principles of feedback applicable to corticocortical connections will also be considered.


Assuntos
Retroalimentação , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Humanos , Neurônios , Estimulação Luminosa , Vias Visuais
12.
J Neurosci ; 39(6): 1066-1076, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30541911

RESUMO

Attention is a critical component of visual perception; however, the mechanisms of attention at the granular level are poorly understood. One possible mechanism by which attention modulates neuronal activity is to control the efficacy of communication between connected neurons; however, it is unclear whether attention alters communication efficacy across a variety of neuronal circuits. In parallel, attentional modulation of neuronal firing rate is not uniform but depends upon the match between neuronal feature selectivity and the feature required for successful task completion. Here we tested whether modulation of communication efficacy is a viable mechanism of attention by assessing whether it is consistent across a variety of neuronal circuits and dependent upon the type of information conveyed in each circuit. We identified monosynaptically connected pairs of V1 neurons through cross-correlation of neuronal spike trains recorded in adult female macaque monkeys performing attention-demanding contrast-change detection tasks. Attention toward the stimulus in the receptive field of recorded neurons significantly facilitated the efficacy of communication among connected pairs of V1 neurons. The amount of attentional enhancement depended upon neuronal physiology, with larger facilitation for circuits conveying information about task-relevant features. Furthermore, presynaptic activity was more determinant of attentional enhancement of communication efficacy than postsynaptic activity, and feedforward local circuits often displayed the largest facilitation with attention. Together, these findings highlight attentional modulation of communication efficacy as a generalized mechanism of attention and demonstrate that attentional modulation at the granular level depends on the relevance of feature-specific information conveyed by neuronal circuits.SIGNIFICANCE STATEMENT How we pay attention to objects and locations in the visual environment has a profound impact on visual perception. Individual neurons in the visual cortex are similarly regulated by shifts in visual attention; however, the rules that govern whether and how attention alters neuronal activity are not known. In this study, we explored whether attention regulates communication between connected pairs of neurons in the primary visual cortex. We observed robust attentional facilitation of communication among these circuits. Furthermore, the extent to which the circuits were facilitated by attention depended on whether the information they conveyed was relevant for the particular attention task.


Assuntos
Atenção/fisiologia , Córtex Visual/fisiologia , Animais , Comunicação Celular/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Potenciais Evocados Visuais , Feminino , Macaca mulatta , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Desempenho Psicomotor/fisiologia , Sinapses/fisiologia , Córtex Visual/citologia , Percepção Visual/fisiologia
13.
J Neurophysiol ; 121(3): 799-822, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30540498

RESUMO

The local field potential (LFP) contains rich information about activity in local neuronal populations. However, it has been challenging to establish direct links between LFP modulations and task-relevant behavior or cognitive processes, such as attention. We sought to determine whether LFP amplitude or phase modulations are predictive of the allocation of visual spatial attention. LFPs were recorded simultaneously in multiple early visual brain structures of alert macaque monkeys performing attention-demanding detection and discrimination tasks. Attention directed toward the receptive field of recorded neurons generated systematically larger phase shifts in high-beta- and low-gamma-frequency LFPs compared with LFP phase shifts on trials in which attention was directed away from the receptive field. This attention-mediated temporal advance corresponded to ~10 ms. LFP phase shifts also correlated with reaction times when monkeys were engaged in the tasks. Importantly, attentional modulation of LFP phase was consistent across monkeys, tasks, visual brain structures, and cortical layers. In contrast, attentional modulation of LFP amplitude varied across frequency bands, visual structures/layers, and tasks. Because LFP phase shifts were robust, consistent, and predictive of spatial attention, they could serve as a reliable marker for attention signals in the brain. NEW & NOTEWORTHY Local field potentials (LFPs) reflect the activity of spatially localized populations of neurons. Whether alterations in LFP activity are indicative of cognitive processes, such as attention, is unclear. We found that shifts in the phase of LFPs measured in multiple visual brain areas reliably predicted the focus of spatial attention. LFP phase shifts could therefore serve as a marker for behaviorally relevant attention signals in the brain.


Assuntos
Atenção , Ritmo beta , Processamento Espacial , Ritmo Teta , Percepção Visual , Animais , Discriminação Psicológica , Potenciais Evocados , Feminino , Macaca mulatta , Córtex Visual/fisiologia
14.
J Comp Neurol ; 527(3): 546-557, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29664120

RESUMO

The corticogeniculate (CG) pathway links the visual cortex with the lateral geniculate nucleus (LGN) of the thalamus and is the first feedback connection in the mammalian visual system. Whether functional connections between CG neurons and LGN relay neurons obey or ignore the separation of feedforward visual signals into parallel processing streams is not known. Accordingly, there is some debate about whether CG neurons are morphologically heterogeneous or homogenous. Here we characterized the morphology of CG neurons in the ferret, a visual carnivore with distinct feedforward parallel processing streams, and compared the morphology of ferret CG neurons with CG neuronal morphology previously described in macaque monkeys [Briggs et al. (2016) Neuron, 90, 388]. We used a G-deleted rabies virus as a retrograde tracer to label CG neurons in adult ferrets. We then reconstructed complete dendritic morphologies for a large sample of virus-labeled CG neurons. Quantification of CG morphology revealed three distinct CG neuronal subtypes with striking similarities to the CG neuronal subtypes observed in macaques. These findings suggest that CG neurons may be morphologically diverse in a variety of highly visual mammals in which feedforward visual pathways are organized into parallel processing streams. Accordingly, these results provide support for the notion that CG feedback is functionally parallel stream-specific in ferrets and macaques.


Assuntos
Corpos Geniculados/citologia , Corpos Geniculados/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Vias Visuais/citologia , Vias Visuais/fisiologia , Animais , Furões , Macaca mulatta , Especificidade da Espécie
15.
J Neurophysiol ; 120(4): 1625-1639, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29975169

RESUMO

Correlations and inferred causal interactions among local field potentials (LFPs) simultaneously recorded in distinct visual brain areas can provide insight into how visual and cognitive signals are communicated between neuronal populations. Based on the known anatomical connectivity of hierarchically organized visual cortical areas and electrophysiological measurements of LFP interactions, a framework for interareal frequency-specific communication has emerged. Our goals were to test the predictions of this framework in the context of the early visual pathways and to understand how attention modulates communication between the visual thalamus and primary visual cortex. We recorded LFPs simultaneously in retinotopically aligned regions of the visual thalamus and primary visual cortex in alert and behaving macaque monkeys trained on a contrast-change detection task requiring covert shifts in visual spatial attention. Coherence and Granger-causal interactions among early visual circuits varied dynamically over different trial periods. Attention significantly enhanced alpha-, beta-, and gamma-frequency interactions, often in a manner consistent with the known anatomy of early visual circuits. However, attentional modulation of communication among early visual circuits was not consistent with a simple static framework in which distinct frequency bands convey directed inputs. Instead, neuronal network interactions in early visual circuits were flexible and dynamic, perhaps reflecting task-related shifts in attention. NEW & NOTEWORTHY Attention alters the way we perceive the visual world. For example, attention can modulate how visual information is communicated between the thalamus and cortex. We recorded local field potentials simultaneously in the visual thalamus and cortex to quantify the impact of attention on visual information communication. We found that attentional modulation of visual information communication was not static, but dynamic over the time course of trials.


Assuntos
Atenção , Corpos Geniculados/fisiologia , Córtex Visual/fisiologia , Animais , Ondas Encefálicas , Potenciais Evocados Visuais , Feminino , Macaca mulatta
16.
Proc Natl Acad Sci U S A ; 114(30): E6222-E6230, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28698363

RESUMO

The corticogeniculate (CG) pathway connects the visual cortex with the visual thalamus (LGN) in the feedback direction and enables the cortex to directly influence its own input. Despite numerous investigations, the role of this feedback circuit in visual perception remained elusive. To probe the function of CG feedback in a causal manner, we selectively and reversibly manipulated the activity of CG neurons in anesthetized ferrets in vivo using a combined viral-infection and optogenetics approach to drive expression of channelrhodopsin2 (ChR2) in CG neurons. We observed significant increases in temporal precision and spatial resolution of LGN neuronal responses to drifting grating and white noise stimuli when CG neurons expressing ChR2 were light activated. Enhancing CG feedback reduced visually evoked response latencies, increased spike-timing precision, and reduced classical receptive field size. Increased precision among LGN neurons led to increased spike-timing precision among granular layer V1 neurons as well. Together, our findings suggest that the function of CG feedback is to control the timing and precision of thalamic responses to incoming visual signals.


Assuntos
Furões/fisiologia , Corpos Geniculados/fisiologia , Tálamo/fisiologia , Visão Ocular/fisiologia , Córtex Visual/fisiologia , Animais , Retroalimentação , Optogenética , Estimulação Luminosa , Vias Visuais/fisiologia
17.
Curr Biol ; 27(13): 1878-1887.e5, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28648826

RESUMO

Attention exerts a powerful influence on visual perception. The impact of attention on neuronal activity manifests at early visual information processing stages and progressively increases throughout the visual cortical hierarchy. However, the neuronal mechanisms of attention are unresolved. In particular, the rules governing attentional modulation of individual neurons, whether they are facilitated by or suppressed by attention, are not known. To obtain a more granular or neuron- and circuit-level understanding of the mechanisms of attention and to directly test the feature similarity gain model in V1, we compared attentional modulation with neuronal feature selectivity across a large population of V1 neurons in alert and behaving macaque monkeys trained on an attention-demanding contrast-change detection task. We utilized emerging multi-electrode array technology to record simultaneously from V1 neurons spanning all six cortical layers so that we could characterize the laminar position and physiological response properties of diverse V1 neuronal populations. We found significant relationships between attentional modulation and neuronal position within the cortical hierarchy, neuronal physiology, and neuronal feature selectivity. Our results support the feature similarity gain model and further suggest that attentional modulation depends critically upon the match between neuronal feature selectivity and the features required for the task.


Assuntos
Atenção/fisiologia , Macaca mulatta/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Percepção Visual , Animais , Eletrodos , Feminino , Estimulação Luminosa
18.
J Vis Exp ; (120)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28287546

RESUMO

This protocol outlines large-scale reconstructions of neurons combined with the use of independent and unbiased clustering analyses to create a comprehensive survey of the morphological characteristics observed among a selective neuronal population. Combination of these techniques constitutes a novel approach for the collection and analysis of neuroanatomical data. Together, these techniques enable large-scale, and therefore more comprehensive, sampling of selective neuronal populations and establish unbiased quantitative methods for describing morphologically unique neuronal classes within a population. The protocol outlines the use of modified rabies virus to selectively label neurons. G-deleted rabies virus acts like a retrograde tracer following stereotaxic injection into a target brain structure of interest and serves as a vehicle for the delivery and expression of EGFP in neurons. Large numbers of neurons are infected using this technique and express GFP throughout their dendrites, producing "Golgi-like" complete fills of individual neurons. Accordingly, the virus-mediated retrograde tracing method improves upon traditional dye-based retrograde tracing techniques by producing complete intracellular fills. Individual well-isolated neurons spanning all regions of the brain area under study are selected for reconstruction in order to obtain a representative sample of neurons. The protocol outlines procedures to reconstruct cell bodies and complete dendritic arborization patterns of labeled neurons spanning multiple tissue sections. Morphological data, including positions of each neuron within the brain structure, are extracted for further analysis. Standard programming functions were utilized to perform independent cluster analyses and cluster evaluations based on morphological metrics. To verify the utility of these analyses, statistical evaluation of a cluster analysis performed on 160 neurons reconstructed in the thalamic reticular nucleus of the thalamus (TRN) of the macaque monkey was made. Both the original cluster analysis and the statistical evaluations performed here indicate that TRN neurons are separated into three subpopulations, each with unique morphological characteristics.


Assuntos
Neurônios/classificação , Núcleos Talâmicos/anatomia & histologia , Animais , Dendritos/ultraestrutura , Macaca , Vírus da Raiva , Coloração e Rotulagem/métodos , Tálamo/anatomia & histologia
19.
J Comp Neurol ; 525(5): 1273-1290, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27778378

RESUMO

The thalamic reticular nucleus (TRN) is a unique brain structure at the interface between the thalamus and the cortex. Because the TRN receives bottom-up sensory input and top-down cortical input, it could serve as an integration hub for sensory and cognitive signals. Functional evidence supports broad roles for the TRN in arousal, attention, and sensory selection. How specific circuits connecting the TRN with sensory thalamic structures implement these functions is not known. The structural organization and function of the TRN is particularly interesting in the context of highly organized sensory systems, such as the primate visual system, where neurons in the retina and dorsal lateral geniculate nucleus of the thalamus (dLGN) are morphologically and physiologically distinct and also specialized for processing particular features of the visual environment. To gain insight into the functional relationship between the visual sector of the TRN and the dLGN, we reconstructed a large number of TRN neurons that were retrogradely labeled following injections of rabies virus expressing enhanced green fluorescent protein (EGFP) into the dLGN. An independent cluster analysis, based on 10 morphological metrics measured for each reconstructed neuron, revealed three clusters of TRN neurons that differed in cell body shape and size, dendritic arborization patterns, and medial-lateral position within the TRN. TRN dendritic and axonal morphologies are inconsistent with visual stream-specific projections to the dLGN. Instead, TRN neuronal organization could facilitate transmission of global arousal and/or cognitive signals to the dLGN with retinotopic precision that preserves specialized processing of foveal versus peripheral visual information. J. Comp. Neurol. 525:1273-1290, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Corpos Geniculados/citologia , Neurônios/citologia , Núcleos Talâmicos/citologia , Vias Visuais/citologia , Animais , Imageamento Tridimensional , Macaca , Masculino
20.
Vis Neurosci ; 342017.
Artigo em Inglês | MEDLINE | ID: mdl-30034107

RESUMO

The corticogeniculate circuit is an evolutionarily conserved pathway linking the primary visual cortex with the visual thalamus in the feedback direction. While the corticogeniculate circuit is anatomically robust, the impact of corticogeniculate feedback on the visual response properties of visual thalamic neurons is subtle. Accordingly, discovering the function of corticogeniculate feedback in vision has been a particularly challenging task. In this review, the morphology, organization, physiology, and function of corticogeniculate feedback is compared across mammals commonly studied in visual neuroscience: primates, carnivores, rabbits, and rodents. Common structural and organizational motifs are present across species, including the organization of corticogeniculate feedback into parallel processing streams in highly visual mammals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...